规则系学霸

第二百七十八章 第二场报告:分析最低偏差(2/3)

    这就是老纳什接受采访时所说的,“足够大的偶数包含的素数对个数问题。”

    但关键,还是偏差范围。

    接下来赵奕就开始详细论证的最低偏差K的范围问题。

    台下。

    角落里坐着两个人,年轻的卷发青年毫不起眼,旁边体型稍胖,有些显老的,知道的人仔细一看,就会感到非常震惊。

    那是爱德华-威滕。

    普林斯顿高等研究院教授,著名的物理学家、数学家,菲尔兹奖得主,是弦理论和量子场论的顶尖专家,被美国《生活》周刊评为二次大战后,第六位最有影响的人物。

    爱德华-威滕,实在是太有名了,他完成了广义相对论的正能定理证明,超对称和莫尔斯理论,拓扑量子场论,超弦紧化,镜像对称,超对称规范场论,和对M理论存在性的猜想,等等。

    他在理论物理学上的贡献数不胜数。

    最让人感到惊奇的是,他还凭借对弦理论的数学塑造,拿到了数学界的顶级奖项菲尔兹。

    在这个会场里,爱德华-威滕毫无疑问是最顶级的人物,但很少有人知道他来了。

    他的行程很低调,也和知道的人说起,不要把消息透露出去。

    爱德华-威滕的座位也处在角落,他并不想让太多人知道,但坐在旁边的人,还是频频朝着他看过去,他已经被认出来了。

    爱德华-威滕并没有在意其他人,而是专心致志听着台上的讲解,旁边的年轻人是他的学生,拉尔斯-赛尔伯格。

    赛尔伯格听着报告,忍不住扭过头问向爱德华-威滕,“教授,他这样真的能证明出来吗?”

    爱德华-威滕眼睛继续看着台上,他没有直接回答,而是反问道,“你没有完全看懂那篇论文吧?”

    “有的地方没弄明白。”赛尔伯格抿了抿嘴说道。

    爱德华-威滕点头,“那对你来说还是太复杂了,仔细听听吧。”他说着感叹一句,“真是天才的想法。”

    “就连教授你也说天才……”赛尔伯格对爱德华-威滕无疑是非常的崇拜。

    爱德华-威滕笑道,“他可是塑造了三维震颤波形图,现在又完成了哥德巴赫猜想的证明,虽然还很年轻,可一点都不比我差了。”

    他说完又补充般叹道,“他可真是年轻。”

    “我这次来,就是想和他探讨一下波形图的问题,你仔细听听现在的讲解,对拓展你的思考方式,可能会很有帮助。”

    “是,教授。”

    赛尔伯格也变得认真起来,两人停止了交流,就继续听着台上的讲解。

    赵奕的讲解进入到关键时刻,有关最低偏差K的取值,就是最重要的、也是花费时间最多的内容。

    那些没有理清论文内容的人,听到台上的讲解都感到十分不解,因为赵奕好像是没有明确目标的,做着一个又一个的推导。

    这个过程持续了半个小时还要多。

    好多人都跟不上思路了。

    但对于顶级的数学家来说,却没有什么大不了的,只要没有出现存在争议的问题,只是正常的推导,都是很容易理解的。

    最后赵奕做了一个代换,得出了结论:最低偏差K小于等于函数结果本身减一。

    在得出这个结论以后,赵奕就顿住不再说了,跟上思路的人立刻鼓起了掌,还有好多人没反应过来。

    等了好半天,掌声才充斥了整个会场。

    这个结论足够了。

    赵奕的广义证明方式,就是利用筛法和群论,一起塑造一个偶数N含有多少素数对的期望函数,随后对函数的结果Y的准确性,做出偏差范围的分析。

    分析主要集中在Y的最低偏差K上,最低偏差也就是下限的偏差,简单理解就是最小值。

    最终他得出了结论,K小于等于Y-1。

    这个结果就说明,素数以及它本身,两两结合可以覆盖除二外所有的偶数,或者直白说,任何一个偶数都最少拥有一个素数对,也就是可以分解成两个素数之和。

    赵奕的证明其实得到了两个结论,一个就是证明了哥德巴赫猜想,另一个则是证明出,偶数符合数值越大含有素数对越多的趋向。

    后面的结论是模糊的,也许存在某一个足够大的偶数,只含有一个素数对。

    【领红包】现金or点币红包已经发放到你的账户!微信关注公.众.号【书友大本营】领取!

    当然了。-->>

本章未完,点击下一页继续阅读